Distinct cell cycle–dependent roles for dynactin and dynein at centrosomes
نویسندگان
چکیده
Centrosomal dynactin is required for normal microtubule anchoring and/or focusing independently of dynein. Dynactin is present at centrosomes throughout interphase, but dynein accumulates only during S and G2 phases. Blocking dynein-based motility prevents recruitment of dynactin and dynein to centrosomes and destabilizes both centrosomes and the microtubule array, interfering with cell cycle progression during mitosis. Destabilization of the centrosomal pool of dynactin does not inhibit dynein-based motility or dynein recruitment to centrosomes, but instead causes abnormal G1 centriole separation and delayed entry into S phase. The correct balance of centrosome-associated dynactin subunits is apparently important for satisfaction of the cell cycle mechanism that monitors centrosome integrity before centrosome duplication and ultimately governs the G1 to S transition. Our results suggest that, in addition to functioning as a microtubule anchor, dynactin contributes to the recruitment of important cell cycle regulators to centrosomes.
منابع مشابه
A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase
Centrosomes are closely associated with the nuclear envelope (NE) throughout the cell cycle and this association is maintained in prophase when they separate to establish the future mitotic spindle. At this stage, the kinetochore constituents CENP-F, NudE, NudEL, dynein, and dynactin accumulate at the NE. We demonstrate here that the N-terminal domain of the nuclear pore complex (NPC) protein N...
متن کاملDynactin Is Required for Microtubule Anchoring at Centrosomes
The multiprotein complex, dynactin, is an integral part of the cytoplasmic dynein motor and is required for dynein-based motility in vitro and in vivo. In living cells, perturbation of the dynein-dynactin interaction profoundly blocks mitotic spindle assembly, and inhibition or depletion of dynein or dynactin from meiotic or mitotic cell extracts prevents microtubules from focusing into spindle...
متن کاملLive imaging of Drosophila brain neuroblasts reveals a role for Lis1/dynactin in spindle assembly and mitotic checkpoint control.
Lis1 is required for nuclear migration in fungi, cell cycle progression in mammals, and the formation of a folded cerebral cortex in humans. Lis1 binds dynactin and the dynein motor complex, but the role of Lis1 in many dynein/dynactin-dependent processes is not clearly understood. Here we generate and/or characterize mutants for Drosophila Lis1 and a dynactin subunit, Glued, to investigate the...
متن کاملDynamic Recruitment of CDK5RAP2 to Centrosomes Requires Its Association with Dynein
CDK5RAP2 is a centrosomal protein known to be involved in the regulation of the γ-tubulin ring complex and thus the organization of microtubule arrays. However, the mechanism by which CDK5RAP2 is itself recruited to centrosomes is poorly understood. We report here that CDK5RAP2 displays highly dynamic attachment to centrosomes in a microtubule-dependent manner. CDK5RAP2 associates with the retr...
متن کاملDynein Intermediate Chain Mediated Dynein–Dynactin Interaction Is Required for Interphase Microtubule Organization and Centrosome Replication and Separation inDictyostelium
Cytoplasmic dynein intermediate chain (IC) mediates dynein-dynactin interaction in vitro (Karki, S., and E.L. Holzbaur. 1995. J. Biol. Chem. 270:28806-28811; Vaughan, K.T., and R.B. Vallee. 1995. J. Cell Biol. 131:1507-1516). To investigate the physiological role of IC and dynein-dynactin interaction, we expressed IC truncations in wild-type Dictyostelium cells. ICDeltaC associated with dynacti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 159 شماره
صفحات -
تاریخ انتشار 2002